Similarity Search

CSE545 - Spring 2020
Stony Brook University

H. Andrew Schwartz

Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Data Frameworks

Hadoop File Systeriv

Tensorflow

Algorithms and Analyses
Similarity Search Link Analysis

Recommendation Systems
Deep Learning

Finding Similar Items

(http://blog.soton.ac.uk/hive/2012/05/10/r ecommendation-system-of-hive/)

Real World

(http://www.datacommunitydc.org/blog/20
13/08/entity-resolution-for-big-data)

- There are many applications where we desire finding similar items to a given example.
- For example:
- Document Similarity:
- Mirrored web-pages
- Plagiarism; Similar News
- Recommendations:
- Online purchases
- Movie ratings
- Entity Resolution: matching one instance of a person with another
- Fingerprint Matching: finding the most likely matches in a larg dataset of matches.

Finding Similar Items: Topics

- Shingling
- Minhashing
- Locality-sensitive hashing
- Distance Metrics

We will cover the following methods for finding similar items.
The first 3 make up a pipeline of techniques, culminating in LSH for rapidly matching items over a large search space. Similarity in these cases all comes down to a jaccard set similarity.

Distance metrics introduces a different set of common approaches to assessing similarity between items, assuming one has some features (quantities describing describing them).

Document Similarity

Challenge: How to represent the document in a way that can be efficiently encoded and compared?

The first challenge for efficiently searching for similar items is simply how to represent an item.

Shingles

Goal: Convert documents to sets

If we can represent an item (a document in this case) simply as a set, a very simple representation, then we can look at overlap in sets as similarity.

Shingles

Goal: Convert documents to sets

k-shingles (aka "character n-grams")

- sequence of k characters
E.g. $k=2$ doc="abcdabd" singles(doc, 2) $=\{a b, b c, c d, d a, b d\}$

A very easy way to get sets from all documents and many other file types is simply shingles. Take sequences of k characters in a row.

Shingles

Goal: Convert documents to sets

E.g. $k=2$ doc="abcdabd" singles(doc, 2) $=\{a b, b c, c d, d a, b d\}$

- Similar documents have many common shingles
- Changing words or order has minimal effect.
- In practice use $5<k<10$

We would expect similar document to have similar shingles.
In practice using shingles of size 5 to 10 is more ideal to make it less likely to randomly match shingles between 2 documents.

Shingles

Goal: Convert documents to sets

Large enough that any given shingle
appearing a document is highly unlikely
(e.g. < . 1% chance)

Can hash large shingles to smaller
(e.g. 9-shingles into 4 bytes)

Can also use words (aka n-grams).

- siminar docu ents nave manyy common shingles
- Changing w - S or order has minimal effect.
- In practice use $5<k<10$

Generally, we want elements in our sets (i.e. shingles) to match with about 1 in 1000 probability.

The larger generally the better for this purpose and we can even hash shingles to reduce their size a bit.

Shingles

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

However, such a representation, even when hashed, still enlarges the document rather than reduces it and we want to be able to search over millions to billions of these quickly. If you consider a character as a byte then even hashing 9grams (9 bytes) down to 4 bytes has the potential to make a document $4 x$ its original size.

Minhashing

Goal: Convert sets to shorter ids, signatures

While shingles gives us a simple way to turn a document into a set, we need a way to make that set representation smaller. This is where minhashing comes in.

Minhashing

Goal: Convert sets to shorter ids, "signatures"

Characteristic Matrix, X :

Element	S_{1}	S_{2}	S_{3}	S_{4}
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)
often very sparse! (lots of zeros)

Jaccard Similarity:
$\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}$

Let's go ahead and define how we will compute similarity based on a set:
We can use Jaccard Similarity: The amount of overlap divided by the total elements of the union.
In this way, similarity is basically a percentage of the total number of elements that are shared.
It has intuitive properties such as if one document is larger and thus has more elements in its set that will have the effect of shrinking the amount of similarity unless they other document contains many of the same elements.

We will call "characteristic matrix" the actual type of data structure we use to represent these sets. It's simply a binary matrix with sets (i.e. documents) as columns and shingles (i.e. elements) as rows.
In practice, the characteristic matrix will be very sparse -- remember we want about a 1 in 1000 chance of a particular shingle to appear.

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}
ab	1	1
bc	0	1
de	1	0
ah	1	1
ha	0	0
ed	1	1
ca	0	1

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

Latex equation: sim(S_1, S_2) = \frac\{S_1 \cap S_2 \}\{S_1 Icup S_2\}
Let's start to work with an example charactertistic matrix of two documents.
What would be the similarity?

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}	
ab	1	1	$* *$
bc	0	1	$*$
de	1	0	$*$
ah	1	1	$* *$
ha	0	0	
ed	1	1	$* *$
ca	0	1	$*$

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

$\operatorname{sim}\left(S _1\right.$, S_2 $)=\backslash f r a c\left\{S _1\right.$ lcap S_2 \}\{S_1 \cup S_2\}
One way to quick algorithm to calculate is simply to sum the rows.

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}	
ab	1	1	$* *$
bc	0	1	$*$
de	1	0	$*$
ah	1	1	$* *$
ha	0	0	
ed	1	1	$* *$
ca	0	1	$*$

Jaccard Similarity:

$$
\operatorname{sim}\left(S_{1}, S_{2}\right)=\frac{S_{1} \cap S_{2}}{S_{1} \cup S_{2}}
$$

$\operatorname{sim}\left(S_{1}, S_{2}\right)=3 / 6$
\# both have / \# at least one has
and divide the number of 2 s by the number of 1 s. (i.e. $3 / 6$ in this case)
Notice we only care about when one of them is 1.

Minhashing

Problem: Even if hashing shingle contents, sets of shingles are large
e.g. 4 byte integer per shingle: assume all unique shingles, => $4 x$ the size of the document
(since there are as many shingles as characters and 1byte per char).

So, keeping Jaccard Similarity in mind, how do we get this characteristic matrix smaller?

Minhashing

Characteristic Matrix: X

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

We want to create a shorter id a "signature" from the larger characteristic matrix

Minhashing

Characteristic Matrix: X

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature" for each set.
(Leskovec at al., 2014; http://www.mmds.org/)

Well let's take an extreme approach. What if we only represented the Set by a single integer?

We could just keep the row number where the first element was non-zero.

Minhashing

Approximate Approach:

Characteristic Matrix: X

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature" for each set.
(Leskovec at al., 2014; http://www.mmds.org/)

Here is what we would get: set 1 and set 3 woudl actually get the same integer, while 2 and 4 would each have a different.

Well set 1 and set 3 do happen to be quite similar: Their Sim is $3 / 4$
In fact, if you think about it, given a random ordering of the rows, what is the probability that both of their first non-zero row happens to be the same? $3 / 4$ in 3 of the 4 possible rows that have at least a $1(a b, b v$, ed, and ca) only 1 of them being first wouldn't be a match (bc).

Minhashing

(Leskovec at al., 2014; http://www.mmds.org/)

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature".

| | S_{1} | S_{2} | S_{3} | S_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ah | 0 | 1 | 0 | 1 |
| ca | 1 | 0 | 1 | 0 |
| ed | 1 | 0 | 1 | 0 |
| de | 0 | 1 | 0 | 1 |
| ab | 1 | 0 | 1 | 0 |
| bc | 1 | 0 | 0 | 1 |

In reality of course, a single integer is not going to be enough but we can repeat this a few times. Here's an example after we shuffle.
Now both pairs S1-S3 AND S2 S4 match. S2 and S4 also have a sim of $3 / 4$. If we just asked at this point how much did these 2-integer signatures match, we'd find 100% for S1-S3 and 50% for S2-S4... one overestimates; one underestimates... This can continue in order to make a more and more accurate signature that matches with the same probability as the Jaccard Similarity.

Minhashing

(Leskovec at al., 2014; http://www.mmds.org/)

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.
2) Shuffle and repeat to get a "signature".

2121					signatures			
	S_{1}	S_{2}	S_{3}	S_{4}	S_{1}	S_{2}	S_{3}	S_{4}
ah	0	1	0	1	1	3	1	2
ca	1	0	1	0	2	1	2	1
ed	1	0	1	0				
de	0	1	0	1				
ab	1	0	1	0				
bc	1	0	0	1				

Here is what the signatures look like so far.
We're going to try to produce a "signature matrix" as the output of minhashing, where each column is a signature.

Minhashing

Characteristic Matrix: X

Approximate Approach:

1) Instead of keeping whole characteristic matrix, just keep first row where 1 is encountered.

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

One downside of how we've discuss this is the time it woudl take to keep reshuffling rows, but there's really no need to do that.
Shuffle is just the conceptual way to think about this when in fact we can use hash functions to give us a random order of rows to look at.

Minhashing

Characteristic Matrix:

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to first row where set appears.

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

	S_{1}	S_{2}	S_{3}	S_{4}
ab	1	0	1	0
bc	1	0	0	1
de	0	1	0	1
ah	0	1	0	1
ha	0	1	0	1
ed	1	0	1	0
ca	1	0	1	0

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

Leskovec at al., 2014; http://www.mmds.org/)

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

(Leskovec at al., 2014; http://www.mmds.org/)

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)
$h\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2 $h\left(\mathrm{~S}_{2}\right)=$ ha \#permuted row 1 $h\left(\mathrm{~S}_{3}\right)=$ ed \#permuted row 2 $h\left(\mathrm{~S}_{4}\right)=$

Minhashing

Minhash function: h

- Based on permutation of rows in the

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

permuted order
1 ha
2 ed
3 ab
4 bc
5 ca
6 ah
7 de

(Leskovec at al., 2014; http://www.mmds.org/)
$h\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2
$h\left(S_{2}\right)=$ ha \#permuted row 1
$h\left(\mathrm{~S}_{3}\right)=$ ed \#permuted row 2
$h\left(\mathrm{~S}_{4}\right)=$ ha \#permuted row 1

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$h_{1}\left(\mathrm{~S}_{1}\right)=$ ed \#permuted row 2
$h_{1}\left(S_{2}\right)=$ ha \#permuted row 1
$h_{1}\left(\mathrm{~S}_{3}\right)=$ ed \#permuted row 2
$h_{1}\left(\mathrm{~S}_{4}\right)=$ ha $\#$ permuted row 1

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}
3	ab	1	0	1	0
4	bc	1	0	0	1
7	de	0	1	0	1
6	ah	0	1	0	1
1	ha	0	1	0	1
2	ed	1	0	1	0
5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

1

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$$
2 \begin{aligned}
& h_{1}\left(\mathrm{~S}_{1}\right)=\text { ed \#permuted row } \\
& h_{1}\left(\mathrm{~S}_{2}\right)=\text { ha } \# \text { permuted row }
\end{aligned}
$$

h $(S)=$ ad \#nermuted raw

Minhashing

Characteristic Matrix:

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1

$2 \begin{aligned} & h_{1}\left(\mathrm{~S}_{1}\right)=\text { ed \#permuted row } \\ & h_{1}\left(\mathrm{~S}_{2}\right)=\text { ha \#permuted row }\end{aligned}$
1
h (S) =ad \#nermutad row

Minhashing

Characteristic Matrix:

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}				

(Leskovec at al., 2014; http://www.mmds.org/)

$$
\operatorname{sim}\left(S _1, \mathrm{~S} _2\right)=\mid \text { frac\{S_1 } \operatorname{ccap} \text { S_2 \}\{S_1 \cup S_2\} }
$$

Minhashing

Characteristic Matrix:

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1

(Leskovec at al., 2014; http://www.mmds.org/)

$$
\operatorname{sim}\left(S _1, \mathrm{~S} _2\right)=\mid \text { frac\{S_1 } \operatorname{ccap} \text { S_2 \}\{S_1 \cup S_2\} }
$$

Minhashing

Characteristic Matrix:

				S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}				

Minhashing

Characteristic Matrix:

				S_{1}	S_{2}	S_{3}	S_{4}
1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Minhashing

Characteristic Matrix:

1	4	3	ab	1	0	1	0
3	2	4	bc	1	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	1	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Minhash function: h

- Based on permutation of rows in the characteristic matrix, h maps sets to rows.

Signature matrix: M

- Record first row where each set had a 1 in the given permutation

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2
\ldots				
\ldots				

$$
\operatorname{sim}\left(S _1, S_{-}\right)=\mid \text {frac\{S_1 \cap S_2 \}\{S_1 \cup S_2\} }
$$

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that
$h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$
Characteristic Matrix:

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$
(Leskovec at al., 2014; http://www.mmds.org/)

$$
\operatorname{sim}\left(S _1, S _2\right)=\mid f r a c\left\{S _1\right. \text { \cap S_2 \}\{S_1 \cup S_2\} }
$$

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

		S_{1}	S_{2}	S_{3}	S_{4}		
3	4	3	ab	$\underline{1}$	0	1	0
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	1
4	5	5	ca	$\underline{1}$	0	1	0

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$
Type $a /(a+b+c)=3 / 4$

$$
\left.\operatorname{sim}\left(S _1, S_{2}\right)=\mid \text { frac\{S_1 } \backslash c a p ~ S _2 ~\right\}\left\{S _1 ~ \backslash c u p ~ S _2\right\} ~
$$

Minhashing

Property of signature matrix:

The probability for any h_{i} (i.e. any row), that $h_{i}\left(S_{1}\right)=h_{i}\left(S_{2}\right)$ is the same as $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Thus, similarity of signatures S_{1}, S_{2} is the fraction of

		S_{1}	S_{2}	S_{3}	S_{4}		
3	4	3	ab	$\underline{1}$	0	1	0
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

minhash functions (i.e. rows) in which they agree.
(Leskovec at al., 2014; http://www.mmds.org/)

Minhashing

Error Bound?

Characteristic Matrix:

1	4	3	ab	$\underline{1}-$	0	$\underline{1}$	S_{1}
S_{2}	S_{3}	S_{4}					
3	2	4	bc	$\underline{1}$	0	0	1
7	1	7	de	0	1	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	$\underline{1}$	0	1	0
4	5	5	ca	$\underline{1}$	0	$\underline{1}$	0

(Leskovec at al., 2014; http://www.mmds.org/)

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Estimated $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$
Type $a /(a+b+c)=3 / 4$
Try $\operatorname{Sim}\left(S_{2}, S_{4}\right)$ and
$\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

Characteristic Matrix:

		S_{1}	S_{2}	S_{3}	S_{4}		
3	4	3	ab	$\underline{1}$	0	1	0
7	2	4	bc	$\underline{1}$	0	0	1
6	3	6	ah	0	1	0	1
2	6	1	ha	0	1	0	1
5	7	2	ed	1	0	1	0
4	5	5	ca	$\underline{1}$	0	1	0

(Leskovec at al., 2014; http://www.mmds.org/)

Error Bound?

Expect error: $\mathrm{O}(\mathbf{1} / \sqrt{ } \boldsymbol{k})$ (k hashes)
Why? Each row is a random observation of 1 or 0 (match or not) with $P($ match $=1)=\operatorname{Sim}(S 1, S 2)$.

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$
Type $a /(a+b+c)=3 / 4$
Try $\operatorname{Sim}\left(S_{2}, S_{4}\right)$ and $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$

$$
\operatorname{sim}\left(S _1, S_{-2}\right)=\mid \text { frac\{S_1 \cap S_2 \}\{S_1 \cup S_2\} }
$$

Minhashing

Characteristic Matrix:

Error Bound?

Expect error: $\mathrm{O}(\mathbf{1} \mathrm{N} \boldsymbol{k})$ (k hashes)
Why? Each row is a random observation of 1 or 0 (match or not) with $P($ match $=1)=\operatorname{Sim}(S 1, S 2)$.
$\mathrm{N}=k$ observations
Standard deviation(std)? < 1 (worst case is 0.5)

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$
Type $a /(a+b+c)=3 / 4$
Try $\operatorname{Sim}\left(S_{2}, S_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

Characteristic Matrix:

Error Bound?

Expect error: $\mathrm{O}(\mathbf{1} \mathrm{N} \boldsymbol{k})$ (k hashes)
Why? Each row is a random observation of 1 or 0 (match or not) with $P($ match $=1)=\operatorname{Sim}(S 1, S 2)$.
$\mathrm{N}=k$ observations
Standard deviation(std)? < 1 (worst case is 0.5)
Standard Error of Mean $=s t d / \sqrt{ } \mathrm{N}$

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	2	1	2	1
h_{2}	2	1	4	1
h_{3}	1	2	1	2

Estimated $\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)=$ agree $/$ all $=2 / 3$

Real $\operatorname{Sim}\left(S_{1}, S_{3}\right)=$
Type $a /(a+b+c)=3 / 4$
Try $\operatorname{Sim}\left(S_{2}, S_{4}\right)$ and $\operatorname{Sim}\left(S_{1}, S_{2}\right)$

Minhashing

In Practice
Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)

Minhashing

In Practice
Problem:

- Can't reasonably do permutations (huge space)
- Can't randomly grab rows according to an order (random disk seeks = slow!)
Solution: Use "random" hash functions.
- Setup:
- Pick ~100 hash functions, hashes
- Store M[i][s] = a potential minimum $h_{i}(r)$ \#initialized to infinity (num hashs x num sets)

Minhashing

Solution: Use "random" hash functions.

Setup:

hashes $=$ [getHfunc(i) for i in rand(1, num=100)]
\#100 hash functions, seeded random
for i in hashes: for s in sets:
$\mathrm{M}[\mathrm{i}][\mathrm{s}]=n \mathrm{n} . \mathrm{inf}$ \#represents a potential minimum $h_{i}(r)$; initially infinity Algorithm ("efficient minhashing"):
for r in rows of $\mathrm{cm}: \# c m$ is characteristic matrix compute $h_{i}(r)$ for all i in hashes \#precompute 100 values for each set s in sets:
if $\mathrm{cm}[\mathrm{r}][\mathrm{s}]==1$:
for i in hashes: \#check which hash produces smallest value if $h_{i}(r)<M[i][s]: M[i][s]=h_{i}(r)$

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

Come up with example?

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4 bytes => $4 x$ the size of the document).

New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.
E.g. 1 m documents; $1,000,000$ choose $2=500,000,000,000$ pairs!

Minhashing

Problem: Even if hashing, sets of shingles are large (e.g. 4

 bytes => $4 x$ the size of the document).New Problem: Even if the size of signatures are small, it can be computationally expensive to find similar pairs.
E.g. 1 m documents; $1,000,000$ choose $2=500,000,000,000$ pairs!
(1m documents isn't even "big data")

Come up with example?

Document Similarity

Duplicate web pages (useful for ranking
Plagiarism
Cluster News Articles
Anything similar to documents: movie/music/art tastes, product characteristics

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity.

If we wanted the similarity for all pairs of documents, could anything be done?

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity. Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Locality-Sensitive Hashing

Goal: find pairs of minhashes likely to be similar (in order to then test more precisely for similarity).

Candidate pairs: pairs of elements to be evaluated for similarity. Approach: Hash multiple times over subsets of data: similar items are likely in the same bucket once.

Approach from MinHash: Hash columns of signature matrix
\Longrightarrow Candidate pairs end up in the same bucket.

Document Similarity Pipeline

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4 byte integers then 40 Mb to hold signature matrix => still 100 k choose 2 is a lot (~ 5 billion)

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$ $P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$ $P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability S1 and S2 agree within a given band $=0.8^{5}=.328$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$

$$
P\left(S_{1}==S_{2} \mid b^{(5)}\right) \text { : probability S1 and S2 agree within a given band }
$$

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
=> if 4byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$ $P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability S 1 and S 2 agree within a given band $=0.8^{5}=.328 \Rightarrow P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672$
$\mathrm{P}\left(\mathrm{S}_{1}!=\mathrm{S}_{2}\right)$: probability S 1 and S 2 do not agree in any band

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
$=>$ if 4 byte integers then 40 Mb to hold signature matrix
=> still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity ; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b^{(5)}\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$\mathrm{P}\left(\mathrm{S}_{1}!=\mathrm{S}_{2}\right)$: probability S 1 and S 2 do not agree in any band

$$
=.672^{20}=.00035
$$

Probabilities of agreement, Example

- 100,000 documents
- 100 random permutations/hash functions/rows
$=>$ if 4 byte integers then 40 Mb to hold signature matrix
$=>$ still 100k choose 2 is a lot (\sim billion)
- 20 bands of 5 rows
- Want 80% Jaccard Similarity; for any row $p\left(S_{1}==S_{2}\right)=.8$
$P\left(S_{1}==S_{2} \mid b\right)$: probability $S 1$ and $S 2$ agree within a given band

$$
=0.8^{5}=.328 \quad \Rightarrow \quad P\left(S_{1}!=S_{2} \mid b\right)=1-.328=.672
$$

$\mathrm{P}\left(\mathrm{S}_{1}!=\mathrm{S}_{2}\right)$: probability S 1 and S 2 do not agree in any band

$$
=.672^{20}=.00035
$$

What if wanting 40\% Jaccard Similarity?

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1 - Jaccard Sim).

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

Typical properties of a distance metric, d (point1,point2)?

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

Typical properties of a distance metric, d :
$d(a, a)=0$
$d(a, b)=d(b, a)$
$d(a, b) \leq d(a, c)+d(c, b)$

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance
- Cosine Distance
- Edit Distance
- Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

- Euclidean Distance

$$
\begin{aligned}
& \text { arity. e.g: } \\
& \text { distance }(X, Y)=\sqrt{\sum_{i}^{n}\left(x_{i}-y_{i}\right)^{2}} \quad \text { ("L2 Norm") }
\end{aligned}
$$

- Cosine Distance
- Edit Distance
- Hamming Distance

Distance Metrics

Pipeline gives us a way to find near-neighbors in high-dimensional space based on Jaccard Distance (1-Jaccard Sim).

There are other metrics of similarity. e.g:

$$
\begin{aligned}
& \text { arity. e.g: } \\
& \text { distance }(X, Y)=\sqrt{\sum_{i}^{n}\left(x_{i}-y_{i}\right)^{2}} \quad \text { ("L2 Norm") }
\end{aligned}
$$

- Cosine Distance
...
- Edit Distance
- Hamming Distance

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.

Locality Sensitive Hashing - Theory

LSH Can be generalized to many distance metrics by converting output to a probability and providing a lower bound on probability of being similar.
E.g. for euclidean distance:

- Choose random lines (analogous to hash functions in minhashing)
- Project the two points onto each line; match if two points within an interval

Side Note on Generating Hash Functions:

What hash functions to use?
Start with 2 decent hash functions
e.g. $h_{a}(x)=$ ascii(string) \% large_prime_number
$h_{b}(x)=\left(3^{*}\right.$ ascii $($ string $\left.)+16\right)$ \% large_prime_number
Add together multiplying the second times i:
$h_{i}(x)=h_{a}(x)+i^{*} h_{b}(x) \%$ |BUCKETS/
e.g. $h_{5}(x)=h_{a}(x)+5^{*} h_{b}(x) \% 100$
https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf
Popular choices: md5 (fast, predistable); mmh3 (easy to seed; fast)

